organic papers

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Xiangshan Wang,* Yuling Li, Daqing Shi and Shujiang Tu

Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China

Correspondence e-mail: xswang@xznu.edu.cn

Key indicators

Single-crystal X-ray study T = 296 KMean σ (C–C) = 0.002 Å R factor = 0.037 wR factor = 0.093 Data-to-parameter ratio = 13.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-Amino-3-cyano-4-(4-methoxyphenyl)-1,4,5,6-tetrahydrobenzo[h]chromene

The title compound, $C_{21}H_{18}N_2O_2$, has been synthesized by the reaction of 2-(4-methoxyphenylmethylidene)-3,4-dihydronaphthalen-1(2H)-one and malononitrile in refluxing ethyl alcohol catalyzed by KF-Al₂O₃. The pyran ring adopts a halfchair conformation, while the fused, partially saturated sixmembered ring is in a distorted boat form.

Comment

2-Aminochromenes are an important class of compounds, found in many naturally occurring products, and employed as cosmetics and pigments and utilized as potential biodegradable agrochemicals (Morinaka & Takahashi, 1977; Witte et al., 1986; Hafez et al., 1987). We report here the X-ray crystal structure of the title compound, (I).

The pyran ring adopts a half-chair conformation. Atoms C1, C2, C4, C5 and O1 are coplanar, while atom C3 deviates from this plane by 0.149 (2) Å. The bond distance C1=C2 [1.350 (2) Å] is significantly longer than C4=C5 [1.324 (2) Å], and there is a corresponding shortening of C1-N1 [1.342 (2) Å] relative to the normal Csp^2 -N bond (1.426 Å; Lorente et al., 1995). The six-membered ring C4-C6/C11-C13 adopts a distorted boat conformation. Atoms C4, C5, C6 and C13 are coplanar, while atoms C11 and C12 deviate from the plane by 0.260 (2) and 0.711 (2) Å, respectively. A similar conformation was observed for the partially saturated sixmembered ring in 2-amino-4-phenyl-5,6-dihydrobenzo[h]quinazoline (Wang et al., 2003). The molecules are linked by $N-H \cdots O$ and $N-H \cdots N$ hydrogen bonds (Table 2), forming a polymer in the crystal structure (Figs. 2 and 3).

Experimental

The utility of fluoride salts as potential bases in variety of synthetic reactions has been recognized in recent years. In particular, alumina coated with potassium fluoride (KF-alumina), resulting in higher selectivity, milder reaction conditions and easier work-up, has been reported as a useful catalyst for many reactions (Clark, 1980). The title compound, (I), was prepared by the reaction of 2-(4-methoxyphenylmethylidene)-3,4-dihydronaphthalen-1(2H)-one and malononitrile in refluxing ethyl alcohol catalyzed by KF-Al2O3. Single

© 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Received 23 July 2003 Accepted 24 July 2003 Online 31 July 2003

Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

The intermolecular hydrogen bonds for (I). [Symmetry codes: A-x, 1-y, 1-z; B x, y, z-1, corresponding to (ii) and (i), respectively, in Table 2.]

The molecular packing diagram of (I), viewed along a.

crystals of (I) suitable for X-ray diffraction were obtained from an ethanol solution by slow evaporation (m.p. 456–457 K).

 $D_x = 1.265 \text{ Mg m}^{-3}$

Cell parameters from 31

 $0.58 \times 0.44 \times 0.40 \text{ mm}$

3 standard reflections every 97 reflections

intensity decay: 3.0%

 $w = 1/[\sigma^2(F_o^2) + (0.052P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

Extinction correction: SHELXTL

Extinction coefficient: 0.0165 (14)

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta\rho_{\rm max} = 0.15 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.11 \text{ e } \text{\AA}^{-3}$

Mo $K\alpha$ radiation

reflections

 $\theta = 3.1 - 18.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$

T = 296 (2) K

Block, yellow

 $\theta_{\max} = 25.3^{\circ}$ $h = 0 \rightarrow 7$

 $k = 0 \rightarrow 30$

 $l = -12 \rightarrow 12$

Crystal data

 $C_{21}H_{18}N_2O_2$ $M_r = 330.37$ Monoclinic, $P2_1/c$ a = 6.478 (1) Å b = 25.557 (5) Å c = 10.549 (2) Å $\beta = 96.75$ (2)° V = 1734.4 (5) Å³ Z = 4

Data collection

Siemens *P*4 diffractometer ω scans Absorption correction: none 3660 measured reflections 3147 independent reflections 1977 reflections with *I* > 2 $\sigma(I)$ *R*_{int} = 0.010

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.093$ S = 0.893147 reflections 236 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

O1-C1	1.3560 (17)	C2-C3	1.514 (2)
O1-C5	1.3985 (17)	C3-C4	1.501 (2)
O2-C17	1.3691 (19)	C4-C5	1.324 (2)
O2-C21	1.413 (2)	C4-C13	1.510 (2)
N1-C1	1.342 (2)	C11-C12	1.501 (2)
N2-C20	1.1467 (19)	C12-C13	1.517 (2)
C1-C2	1.350 (2)		
C1-O1-C5	118.04 (12)	C5-C4-C3	122.54 (14)
N2-C20-C2	176.91 (17)	C4-C5-O1	123.56 (14)
C2-C1-O1	122.40 (14)	C11-C12-C13	112.26 (16)
C1-C2-C3	123.15 (13)	C4-C13-C12	112.18 (14)
C4-C3-C2	109.26 (12)		. ,
C5-O1-C1-C2	4.8 (2)	C1-O1-C5-C4	-4.4(2)
01-C1-C2-C3	3.1 (2)	C4-C5-C6-C11	15.3 (2)
C1-C2-C3-C4	-10.1(2)	C6-C11-C12-C13	-37.6(2)
C2-C3-C4-C5	10.4 (2)	C5-C4-C13-C12	-27.5(2)
C3-C4-C5-O1	-4.0(2)	C11-C12-C13-C4	46.7 (2)
C13-C4-C5-C6	-3.9 (2)		

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{\begin{array}{c} N1 - H1NA \cdots O2^{i} \\ N1 - H1NB \cdots N2^{ii} \end{array}}$	0.871 (9) 0.870 (9)	2.189 (10) 2.151 (10)	3.046 (2) 3.016 (2)	168.1 (15) 173.0 (16)

Symmetry codes: (i) x, y, z - 1; (ii) -x, 1 - y, 1 - z.

Atoms H1NA and H1NB were refined isotropically with the N–H bond length restrained to 0.86 Å. Other H atoms were positioned

geometrically and refined as riding [C–H = 0.93–0.98 Å and $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$].

Data collection: *XSCANS* (Siemens, 1994); cell refinement: *XSCANS*; data reduction: *SHELXTL* (Sheldrick, 1997); program(s) used to solve structure: *SHELXTL*; program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We thank the Foundation of the 'Surpassing Project' of Jiangsu Province for financial support.

References

- Clark, J. H. (1980). Chem. Rev. 80, 429-452.
- Hafez, E. A., Elnagdi, M. H., Elagamey, A. A. & El-Taweel, F. A. (1987). *Heterocycles*, 26, 903–907.
- Lorente, A., Galan, C., Fonseca, I. & Sanz-Aparicio, J. (1995). Can. J. Chem. 73, 1546–1555.
- Morinaka, Y. & Takahashi, K. (1977). Jpn. Patent No. 52 017 498.
- Sheldrick, G. M. (1997). *SHELXTL*. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Wang, X. S., Shi, D. Q., Tu, S. J. & Yu, K. B. (2003). *Acta Cryst.* E**59**, 0423–0424. Witte, E. C., Neuert, P. & Roesch, A. (1986). Ger. Offen. DE 3427985.