Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiangshan Wang,* Yuling Li, Daqing Shi and Shujiang Tu

Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China

Correspondence e-mail: xswang@xznu.edu.cn

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.037$
$w R$ factor $=0.093$
Data-to-parameter ratio $=13.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Amino-3-cyano-4-(4-methoxyphenyl)-1,4,5,6-tetrahydrobenzo[h]chromene

The title compound, $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$, has been synthesized by the reaction of 2-(4-methoxyphenylmethylidene)-3,4-dihydro-naphthalen- $1(2 H)$-one and malononitrile in refluxing ethyl alcohol catalyzed by $\mathrm{KF}-\mathrm{Al}_{2} \mathrm{O}_{3}$. The pyran ring adopts a halfchair conformation, while the fused, partially saturated sixmembered ring is in a distorted boat form.

Comment

2-Aminochromenes are an important class of compounds, found in many naturally occurring products, and employed as cosmetics and pigments and utilized as potential biodegradable agrochemicals (Morinaka \& Takahashi, 1977; Witte et al., 1986; Hafez et al., 1987). We report here the X-ray crystal structure of the title compound, (I).

(I)

The pyran ring adopts a half-chair conformation. Atoms C 1 , $\mathrm{C} 2, \mathrm{C} 4, \mathrm{C} 5$ and O 1 are coplanar, while atom C3 deviates from this plane by $0.149(2) \AA$. The bond distance $\mathrm{C} 1=\mathrm{C} 2$ $[1.350(2) \AA$ is significantly longer than $\mathrm{C} 4=\mathrm{C} 5[1.324$ (2) \AA] , and there is a corresponding shortening of $\mathrm{C} 1-\mathrm{N} 1$ [1.342 (2) \AA] relative to the normal $\mathrm{Csp}{ }^{2}-\mathrm{N}$ bond ($1.426 \AA$; Lorente et al., 1995). The six-membered ring C4-C6/C11-C13 adopts a distorted boat conformation. Atoms C4, C5, C6 and C 13 are coplanar, while atoms C 11 and C 12 deviate from the plane by 0.260 (2) and 0.711 (2) \AA, respectively. A similar conformation was observed for the partially saturated sixmembered ring in 2-amino-4-phenyl-5,6-dihydrobenzo[h]quinazoline (Wang et al., 2003). The molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 2), forming a polymer in the crystal structure (Figs. 2 and 3).

Experimental

The utility of fluoride salts as potential bases in variety of synthetic reactions has been recognized in recent years. In particular, alumina coated with potassium fluoride (KF-alumina), resulting in higher selectivity, milder reaction conditions and easier work-up, has been reported as a useful catalyst for many reactions (Clark, 1980). The title compound, (I), was prepared by the reaction of 2-(4-methoxy-phenylmethylidene)-3,4-dihydronaphthalen- $1(2 \mathrm{H})$-one and malononitrile in refluxing ethyl alcohol catalyzed by $\mathrm{KF}-\mathrm{Al}_{2} \mathrm{O}_{3}$. Single

Received 23 July 2003 Accepted 24 July 2003 Online 31 July 2003

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
The intermolecular hydrogen bonds for (I). [Symmetry codes: $A-x$, $1-y, 1-z ; B x, y, z-1$, corresponding to (ii) and (i), respectively, in Table 2.]

The molecular packing diagram of (I), viewed along \mathbf{a}.
crystals of (I) suitable for X-ray diffraction were obtained from an ethanol solution by slow evaporation (m.p. 456-457 K).

Crystal data
$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=330.37$
Monoclinic, $P 2_{1} / c$
$a=6.478$ (1) \AA
$b=25.557$ (5) A \AA
$c=10.549$ (2) \AA
$\beta=96.75$ (2) ${ }^{\circ}$
$V=1734.4$ (5) \AA^{3}
$Z=4$
$D_{x}=1.265 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 31 reflections
$\theta=3.1-18.5^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Block, yellow
$0.58 \times 0.44 \times 0.40 \mathrm{~mm}$
Data collection
Siemens $P 4$ diffractometer
$\theta_{\text {max }}=25.3^{\circ}$
ω scans
Absorption correction: none
3660 measured reflections
3147 independent reflections
1977 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.010$
$h=0 \rightarrow 7$
$k=0 \rightarrow 30$
$l=-12 \rightarrow 12$
3 standard reflections every 97 reflections intensity decay: 3.0%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.093$
$S=0.89$
3147 reflections
236 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

O1-C1	$1.3560(17)$	C2-C3	$1.514(2)$
O1-C5	$1.3985(17)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.501(2)$
O2-C17	$1.3691(19)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.324(2)$
O2-C21	$1.413(2)$	$\mathrm{C} 4-\mathrm{C} 13$	$1.510(2)$
N1-C1	$1.342(2)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.501(2)$
N2-C20	$1.1467(19)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.517(2)$
C1-C2	$1.350(2)$		
C1-O1-C5	$118.04(12)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$122.54(14)$
N2-C20-C2	$176.91(17)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1$	$123.56(14)$
C2-C1-O1	$122.40(14)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$112.26(16)$
C1-C2-C3	$123.15(13)$	$\mathrm{C} 4-\mathrm{C} 13-\mathrm{C} 12$	$112.18(14)$
C4-C3-C2	$109.26(12)$		
C5-O1-C1-C2	$4.8(2)$	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 4$	$-4.4(2)$
O1-C1-C2-C3	$3.1(2)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 11$	$15.3(2)$
C1-C2-C3-C4	$-10.1(2)$	$\mathrm{C} 6-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$-37.6(2)$
C2-C3-C4-C5	$10.4(2)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 13-\mathrm{C} 12$	$-27.5(2)$
C3-C4-C5-O1	$-4.0(2)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 4$	$46.7(2)$
C13-C4-C5-C6	$-3.9(2)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~N} A \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.871(9)$	$2.189(10)$	$3.046(2)$	$168.1(15)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} B \cdots \mathrm{~N} 2^{\mathrm{ii}}$	$0.870(9)$	$2.151(10)$	$3.016(2)$	$173.0(16)$

Symmetry codes: (i) $x, y, z-1$; (ii) $-x, 1-y, 1-z$.

Atoms H1N A and $\mathrm{H} 1 \mathrm{~N} B$ were refined isotropically with the $\mathrm{N}-\mathrm{H}$ bond length restrained to $0.86 \AA$. Other H atoms were positioned
geometrically and refined as riding $[\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997); program(s) used to solve structure: $S H E L X T L$; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We thank the Foundation of the 'Surpassing Project' of Jiangsu Province for financial support.

References

Clark, J. H. (1980). Chem. Rev. 80, 429-452.
Hafez, E. A., Elnagdi, M. H., Elagamey, A. A. \& El-Taweel, F. A. (1987). Heterocycles, 26, 903-907.
Lorente, A., Galan, C., Fonseca, I. \& Sanz-Aparicio, J. (1995). Can. J. Chem. 73, 1546-1555.
Morinaka, Y. \& Takahashi, K. (1977). Jpn. Patent No. 52017498.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Wang, X. S., Shi, D. Q., Tu, S. J. \& Yu, K. B. (2003). Acta Cryst. E59, o423-o424. Witte, E. C., Neuert, P. \& Roesch, A. (1986). Ger. Offen. DE 3427985.

